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Abstract— The manufacturing industry employs various metal cutting processes for part machining, with end milling being a 

prevalent method. Surface roughness significantly impacts the quality of machined parts, influencing properties such as wear resistance, 

ductility, tensile strength, and fatigue strength. This dissertation investigates the influence of cutting process parameters—cutting speed, 

feed rate, and depth of cut—on response variables including cutting force, surface roughness, and material removal rate (MRR). The 

objective is to optimize these parameters to achieve lower cutting force, reduced surface roughness, and higher MRR. Experiments were 

conducted on 316L stainless steel using a CNC milling machine equipped with TiSiN-coated solid carbide end mills. The Taguchi L9 

design and ANOVA methods were utilized to identify the optimal parameter settings. Grey Relation Analysis (GRA) was also applied to 

evaluate the multiple performance characteristics and determine the optimal combination of parameters. Analysis of Variance (ANOVA) 

determined the significant influence of each parameter on the response variables. The findings indicate that depth of cut predominantly 

affects cutting force and surface roughness, while both depth of cut and feed rate significantly impact MRR. Optimal parameter settings 

are recommended based on varying priorities of MRR and surface roughness. This study provides valuable insights for enhancing 

machining efficiency and quality in industrial applications of 316L stainless steel. 

 

Index Terms— Dry Milling, ANOVA, Taguchi, Surface roughness, Cutting force, MRR. 

 

I. INTRODUCTION 

In modern production environments, bridging the gap 

between productivity and quality is paramount. This study is 

centered on the optimization of machining process 

parameters applicable to the end milling of 316L Stainless 

Steel under dry machining conditions. Due to the material's 

inherent machinability challenges, identifying optimal 

process parameters is crucial for improving operational 

efficiency and product quality. The research endeavors to 

explore the utilization of neural networks in predicting tool 

wear and surface roughness in end milling procedures, with 

the overarching goal of augmenting surface quality and 

material removal rates. This endeavor involved optimizing 

cutting speed, feed rate, and depth of cut parameters. 

Additionally, the study conducted a comparative assessment 

of four optimization methodologies—Principal Components 

Analysis (PCA), Utility Theory, Grey Relational Analysis 

(GRA), and the Taguchi Optimization Principle—to assess 

their effectiveness in multi-objective optimization within 

CNC end milling. The outcomes underscore the pivotal role 

of depth of cut in diminishing surface roughness [1-4].  

The investigation optimizes milling parameters for AISI 

1040 steel through the application of the Taguchi method. 

The study successfully achieves desired levels of surface 

roughness, regardless of whether coated or uncoated inserts 

are employed. [5] The review of literature underscores the 

importance of improving surface roughness in AISI 316L 

stainless steel machining. It accentuates the predominant 

impact of the feed rate on surface roughness, while indicating 

that the influence of cutting speed on surface roughness 

outcomes is comparatively marginal [6]. The research 

endeavors to optimize the face milling process of stainless 

steel 316 utilizing the Taguchi method in conjunction with 

analysis of variance (ANOVA). The primary objective is to 

determine the optimal machining parameters that yield 

superior surface roughness (Ra) and material removal rate 

(MRR) under diverse coating conditions [7]. The study 

introduces a cost-effective, versatile multi-sensor tool 

condition monitoring system aimed at precise forecasts of 

tool wear. Experimental data validates its accuracy. Future 

research will focus on enhancing system calibration and 

advancing data analysis techniques [8]. The study 

investigates multiple techniques including Singular Value 

Decomposition (SVD), Pseudo Inverse, Kalman filter, and 

empirical methods to indirectly ascertain forces in 

machining, particularly cutting forces, tool wear, and 

condition monitoring. The aim is to enhance the estimation of 

cutting forces for optimal tool design, supplemented by 

statistical analysis [9]. The research aims to determine the 

most effective cutting parameters for enhancing overall 

performance, reducing tool wear, and improving metal 

removal and wear rate during the milling of Ti-6Al-4V Alloy. 

This is achieved through the utilization of a genetic algorithm 

[10]. Additionally, it enhances cutting parameters for a CNC 

turning machine to address surface inspection challenges, 

employing ANOVA to evaluate the influence of parameters 

on surface roughness (Ra) and material removal rate (MRR), 

leading to enhanced MRR and reduced surface roughness 

[11]. This study investigates the application of vegetable oil 
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in Minimum Quantity Lubrication (MQL) setups for 

machining AISI O2 steel. It utilizes Taguchi, GRA, and RSM 

methodologies to enhance cutting tool performance and 

reduce wear. Achieving an impressive predictive accuracy of 

0.9963 R-squared value, the research makes significant 

strides in promoting sustainable manufacturing practices 

[12]. The study emphasizes temperature forecasting, tool 

wear analysis, and power consumption assessment, 

advocating for dry machining for health and environmental 

reasons. Utilizing Taguchi methods in experimental setup, it 

incorporates Response Surface Methodology (RSM), 

Box-Behnken Design (BBD), and Multi-Objective Genetic 

Algorithm (MOGA) to fine-tune machining variables. The 

experimental outcomes closely align with forecasts, 

demonstrating an error margin of under 4% [13]. The 

investigation utilizes Taguchi methodology alongside Grey 

Relational Analysis (GRA) to optimize various objectives in 

the end milling process of enset fiber composites. It 

delineates the optimal surface roughness achieved at lower 

spindle speed and feed rate settings, highlighting the 

influence of depth of cut on surface roughness and feed rate 

on material removal rate [14]. The study surpasses previous 

research by refining milling force coefficients and cutter 

run-out parameters, showcasing heightened predictive 

precision compared to the conventional average force 

approach. These findings imply broader effectiveness across 

diverse milling conditions and methodologies [15].  

II. METHODS AND MATERIALS 

The research systematically examines the effects of cutting 

speed, feed rate, and depth of cut on critical performance 

metrics: cutting force, surface roughness, and material 

removal rate (MRR). Employing Analysis of Variance 

(ANOVA), the study statistically dissects the influence of 

each process parameter on machining performance, offering 

a quantitative evaluation of their significance. 

Utilizing the Taguchi L9 orthogonal array, the 

experimental design minimizes the number of trials while 

ensuring comprehensive analysis. This method identifies 

robust parameter configurations that enhance performance 

across varied machining conditions. 

Employing a distinctive orthogonal array design, the 

Taguchi method enables a comprehensive exploration of the 

entire parameter space while minimizing the number of 

required experiments. Analysis of Variance (ANOVA) is 

utilized to determine the most significant factor impacting the 

response. The study adopts a "Smaller-the-better" criterion 

for evaluating surface roughness and cutting force, and a 

"Higher-the-better" criterion for assessing material removal 

rate.  

The calculations for Signal-to-Noise (S/N) ratios are 

conducted using the following formulas: 

 

 

Table 1 Chemical Analysis of 316l Stainless Steel 

Grade C% M% P% Si% Ni% Cr% N% Mo% 

316L 0.023 0.005 0.043 0.26 10.03 16.25 0.038 2.02 

Employing a distinctive orthogonal array design, the 

Taguchi method enables a comprehensive exploration of the 

entire parameter space while minimizing the number of 

required experiments. Analysis of Variance (ANOVA) is 

utilized to determine the most significant factor impacting the 

response. The study adopts a "Smaller-the-better" criterion 

for evaluating surface roughness and cutting force, and a 

"Higher-the-better" criterion for assessing material removal 

rate.  

The calculations for Signal-to-Noise (S/N) ratios are 

conducted using the following formulas: 

S

N
= −10 log

1

n
Σny2  ……….. For lower the better 

Characteristics (Eq. 1)  

S

N
= −10 log

1

n
Σn 1

𝑦2   ………. For higher the better 

Characteristics (Eq. 2) 

In the experimental setup, we conducted machining 

operations on 316L Stainless Steel employing a CNC milling 

machine outfitted with TiSiN-coated solid carbide end mills. 

We systematically adjusted the cutting process parameters 

throughout the experimental runs, while measuring and 

recording the response variables.  

Subsequently, we analyzed the experimental data using 

ANOVA and GRA techniques to pinpoint the optimal 

machining parameters and assess their significance. Figure 1 

depicts the measurement setup for cutting force analysis, 

comprising a Kistler dynamometer, a charge amplifier, a data 

acquisition system, and data processing software. 

The dynamometer is employed to gauge the forces and 

torque in action. Positioned on the machine bed, the 

dynamometer interfaces with an amplification unit and a PC 

running Dynoware software, facilitating the logging and 

exportation of cutting force data. The data acquisition 

system, utilizing Dynoware software, is employed for 

subsequent analysis. 

 
Figure 1 Experimental setup 
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Table 1 presents the chemical properties of stainless steel 

316L. End mill slotting employs a four-flute cutter with an 

8mm diameter, coated in TiSiN. 

Table 2 presents the attributes of an end mill cutter made of 

solid carbide and coated with TiSiN.  

Table 2 End Mill Cutter Technical Specifications 

Sr. No. Description Specification 

1 Material Solid Caride 

2 No. of flutes 4 

3 Diameter of tool 8 mm 

4 Helix Angle 35 

5 Manufacturer SURPASS 

6 Coating TiSiN 

7 Maximum cutting speed 1990 rpm 

8 Hardness 55 HRC 

9 feed/tooth for slotting 0.08 

The experimental setup comprised three levels and three 

criteria, specifically evaluating cutting force, surface 

roughness  (Ra), and material removal rate (MRR). The 

control parameters included cutting speed, feed rate, and 

depth of cut. Utilizing Taguchi's design methodology, an L9 

orthogonal array was employed, resulting in nine 

experimental trials for each coating type. Detailed 

information on the process parameters and their respective 

levels is presented in Table 3. 

Table 3 Process Parameter and Their Levels 

Factors Units Level 1 Level 2 Level 3 

Cutting Speed (Vc) RPM 1400 1600 1800 

Depth of cut (d) mm 0.2 0.4 0.5 

Feed rate (f) mm/rev 0.025 0.04 0.055 

Table 4 Observations for L9 Experimentation 

Sr. 

No. 
d (mm) f (mm/rev) 

Vc 

(RPM) 
t (Sec.) Fc (N) 

SR 

(µm) 

MRR 

(cc/min) 

1 0.2 0.025 1400 85.7 47.61 0.14 4.748 

2 0.2 0.04 1600 46.87 48.22 0.142 8.683 

3 0.2 0.055 1800 30.3 54.47 0.146 13.43 

4 0.4 0.025 1600 75 79.96 0.206 10.85 

5 0.4 0.04 1800 41.67 83.16 0.171 19.53 

6 0.4 0.055 1400 38.96 88.81 0.184 20.89 

7 0.5 0.025 1800 66.67 87.89 0.156 12.21 

8 0.5 0.04 1400 53.57 115.8 0.151 15.19 

9 0.5 0.055 1600 34.09 121 0.168 17.87 

III. RESULTS AND DISCUSSION 

Analysis of Variance (ANOVA) is the predominant 

statistical method utilized in experimental results to quantify 

the percentage contribution of each factor. Examination of 

the ANOVA table for a specific analysis aid in identifying the 

factors requiring control and those that do not. 

The ANOVA analysis, detailed in Table 5, highlights the 

significant factors affecting cutting force. Depth of cut 

emerges as the most influential, contributing 87.92%, 

followed by feed rate at 7.03%, with cutting speed making 

the least contribution at 2.45%. The ANOVA table for cutting 

force reveals that cutting speed and depth of cut are indeed 

significant factors, with p-values of 0.029, exceeding the 0.05 

threshold for a 95% confidence level. Additionally, their 

F-values of 33.75 greatly surpass the critical F-value of 4.46. 

However, despite its contribution factor of 7.03%, feed rate 

does not hold significance, as its p-value is higher than 0.05. 

Table 5 Analysis of Variance for Cutting Force 

Source DF 
Seq 

SS 
Contribution 

Adj 

SS 
Adj MS F-Value P-Value 

d (mm) 2 5114.9 87.92% 5114.9 2557.47 33.75 0.029 

f 

(mm/rev) 
2 409.1 7.03% 409.1 204.55 2.7 0.27 

Vc 

(RPM) 
2 142.4 2.45% 142.4 71.22 0.94 0.515 

Error 2 151.5 2.60% 151.5 75.77   

Total 8 5818 100.00%     

 
Figure 2: % Contribution of Cutting Process Parameters for 

Cutting Force 

 
Figure 3: Main Effect Plot for Cutting Force 

Figure 3 illustrates the average cutting force values across 

different depths of cut, feed rates, and cutting speeds, as 
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detailed in Table 4.4. Notably, a cutting speed of 1800 RPM 

(level 3) yields the lowest average cutting force of 75.17 N, 

while a cutting speed of 1400 RPM (level 1) corresponds to 

the highest cutting force of 84.07 N. Thus, maintaining the 

cutting speed at level 3 is advisable for minimizing cutting 

forces. Regarding the depth of cut (mm), level 1 produces the 

lowest average cutting force of 50.1 N, whereas level 3 (0.5 

mm) results in the highest cutting force of 108.23 N. 

Consequently, it is recommended to set the depth of cut at 

level 1 to mitigate cutting forces. Analyzing the graph, it is 

evident that a feed rate of 0.025 mm/rev (level 1) yields the 

lowest cutting force of 71.82 N, whereas a feed rate of 0.055 

mm/rev (level 3) corresponds to the highest cutting force of 

88.09 N. Therefore, opting for a feed rate at level 3 is 

preferable for minimizing cutting forces. 

Table 5 Response Table for Means of Cutting Force 

Level 
Depth of 

Cut (mm) 

Feed Rate 

(mm/rev) 

Cutting Speed 

(RPM) 

1 50.1 71.82 84.07 

2 83.98 82.39 83.06 

3 108.23 88.09 75.17 

Delta 58.13 16.27 8.9 

Rank 1 2 3 

 
Figure 4 Main Effect Plot for S/N Ratio of Cutting Force 

Figure 4 illustrates the main effects graphs. From these 

plots, one can forecast the optimal levels of milling 

parameters for the S/N ratio of cutting force. Notably, for 

achieving the maximum S/N ratio, it is observed that level 3 

for cutting speed, level 1 for depth of cut, and level 1 for feed 

rate are ideal. Lower cutting force correlates with a preferable 

S/N ratio, as evidenced by the main effect plot for the S/N 

ratio of cutting force. 

The ANOVA analysis presented in Table 6 delineates the 

distribution of data means. Notably, depth of cut exhibits a 

substantial contribution of 79.18% to surface roughness, 

whereas feed rate and cutting speed only contribute 7.59% 

and 10.25%, respectively. The ANOVA table for surface 

roughness, as depicted in Table 4.5, underscores the 

prominence of depth of cut as the most significant factor. 

This assertion is supported by its p-value of 0.036, falling 

below the critical threshold of 0.05 at a 95% confidence level. 

Moreover, its corresponding F-value of 26.6 significantly 

exceeds the tabulated F-value [at (2, 8) = 4.46], further 

substantiating its significance. In contrast, feed rate and 

cutting speed exhibit insignificance, with p-values exceeding 

0.05 and F-values of 0.282 and 0.225, respectively, both 

notably below the table F-value [at (2, 8) = 4.46]. 

Table 6 Analysis of Variance for Surface Roughness 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

d (mm) 2 0.003033 79.18% 0.003 0.00152 26.6 0.036 

f 

(mm/rev) 
2 0.000291 7.59% 0.0003 0.00015 2.55 0.282 

Vc 

(RPM) 
2 0.000393 10.25% 0.0004 0.0002 3.44 0.225 

Error 2 0.000114 2.98% 0.0001 5.7E-05   

Total 8 0.00383 100.00%     

 
Figure 5 % Contribution of Cutting Process Parameters for 

SR 

 
Figure 6 Main Effect Plot for Surface Roughness 

Figure 6 presents the average Surface Roughness (SR) 

values across different levels of Cutting Speed, Feed Rate, 

and Depth of Cut [refer to Table 6]. The data demonstrates 

that a Depth of Cut at level 1 (0.2 mm) results in the lowest 

average SR value of 0.1427 µm, whereas level 2 (0.4 mm) 

produces the highest SR value of 0.187 µm. Consequently, 
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maintaining the Depth of Cut at level 1 is advisable for 

achieving lower SR values. Regarding Feed Rate (mm/rev), 

level 2 exhibits the lowest average SR value of 0.1547 µm, 

while level 1 (0.025 mm/rev) yields the highest SR value of 

0.1673 µm, indicating that Feed Rate should be set at level 2. 

The graph further illustrates that Cutting Speed at level 3 

(1800 RPM) provides the lowest SR value of 0.1577 µm. 

Conversely, level 2 (1400 RPM) results in the highest SR 

value of 0.172 µm, with level 1 (1400 RPM) producing an 

intermediate SR value of 0.1583 µm. Therefore, to achieve 

minimal SR values, Cutting Speed should be maintained at 

level 3. 

Table 7 Response Table for Means of SR 

Level 
Depth of 

Cut(mm) 

Feed Rate 

(mm/rev) 

Cutting Speed 

(RPM) 

1 0.1427 0.1673 0.1583 

2 0.187 0.1547 0.172 

3 0.1583 0.166 0.1577 

Delta 0.0443 0.0127 0.0143 

Rank 1 2 3 

 
Figure 7 Main Effect Plot for S/N Ratio of Cutting Force 

Figure 7 displays the main effects graphs for the milling 

parameters. Optimal milling parameter levels are identified 

from the main effects plot for the signal-to-noise (S/N) ratio 

of surface roughness (SR). The plot indicates that the highest 

S/N ratio values are achieved at cutting speed level 3, depth 

of cut level 3, and feed rate level 1. To minimize SR, a higher 

S/N ratio is preferable, as illustrated in the main effects plot 

for the S/N ratio of SR. 

The analysis of variance (ANOVA) for the data means is 

presented in Table 8. The results indicate that the feed rate 

accounts for 45.99% of the contribution, while the depth of 

cut contributes 48.80%. In contrast, the cutting speed 

contributes only 4.57% to the material removal rate (MRR). 

Figure 8 displays the Minitab 21 interface with ANOVA 

results for MRR, which closely align with the calculated 

values. Figure 9 illustrates the percentage contribution of the 

cutting process parameters to the MRR. 

Table 8 Analysis of Variance for MRR 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

d (mm) 2 107.855 48.80% 107.86 53.9273 76.7 0.013 

f 

(mm/rev) 
2 101.655 45.99% 101.66 50.8276 72.3 0.014 

Vc (RPM) 2 10.101 4.57% 10.101 5.0505 7.18 0.122 

Error 2 1.406 0.64% 1.406 0.703   

Total 8 221.017 100.00%     

Table 9 Response Table for Means of SR 

Level 
Depth of Cut 

(mm) 

Feed Rate 

(mm/rev) 

Cutting Speed 

(RPM) 

1 8.954 9.269 13.609 

2 17.09 14.468 12.468 

3 15.09 17.397 15.057 

Delta 8.136 8.127 2.589 

Rank 1 2 3 

 
Figure 8 Minitab 21 Window with ANOVA Results for 

Surface MRR 

 
Figure 9 Contribution of Cutting Process Parameters for 

MRR 

Figure 10 presents the average Material Removal Rate 

(MRR) values corresponding to different levels of Depth of 

Cut, Feed Rate, and Cutting Speed, as detailed in Table 9. 

The data indicate that the second level of Depth of Cut, 



    ISSN (Online) 2456-1290 

International Journal of Engineering Research in Mechanical and Civil Engineering 

(IJERMCE) 

Vol 11, Issue 8, August 2024 

 

30 

specifically 0.4 mm, yields the highest average MRR value of 

17.09 cc/min. Conversely, the first level, 0.2 mm, results in 

the lowest MRR value of 8.954 cc/min. Therefore, it is 

evident that a Depth of Cut of 0.4 mm should be maintained 

to achieve the highest MRR values. 

 
Figure 10 Main Effect Plot for Material Removal Rate 

In the context of feed rate (mm/rev), the experimental data 

indicates that at level 3, with a feed rate of 0.055 mm/rev, the 

highest average material removal rate (MRR) of 17.397 

cc/min is achieved. Conversely, level 2, with a feed rate of 

0.04 mm/rev, results in an intermediate MRR of 14.468 

cc/min, while level 1, with a feed rate of 0.025 mm/rev, 

produces the lowest MRR of 9.269 cc/min. Therefore, 

maintaining the feed rate at level 3 is recommended to 

achieve the highest MRR. As illustrated in the accompanying 

graph, a depth of cut at level 3, corresponding to 0.5 mm, 

results in the highest MRR of 15.057 cc/min. In contrast, 

level 2, with a depth of cut of 0.4 mm, yields the lowest MRR 

of 12.468 cc/min, and level 1, with a depth of cut of 0.2 mm, 

provides an intermediate MRR of 13.609 cc/min. Hence, to 

maximize the MRR, the depth of cut should be optimized at 

level 3. 

Figure 11 presents the main effects plots. The optimal 

levels for milling parameters are inferred from the main 

effects plot for the signal-to-noise (S/N) ratio of Material 

Removal Rate (MRR). The plots indicate that the maximum 

S/N ratio value is achieved at level 3 for cutting speed, level 2 

for depth of cut, and level 3 for feed rate. A higher S/N ratio 

correlates with improved MRR, as demonstrated in the main 

effects plot for the S/N ratio of MRR. 

 
Figure 11 Main Effect Plot for S/N Ratio of MRR 

A. Grey Relational Analysis (GRA) 

Step 1: Grey Relational Generation 

In the first step of grey relational generation normalize the 

experimental data according to the type of output response. 

For data pre-processing in the GRA process, "the lower 

cutting force, lower SR and the higher MRR" are the 

indication of better performance in hard milling operation. 

Then, it has a characteristic of the "higher is better" if the 

target value of original sequence is infinite. The original 

sequence can be normalized as following. 

Xi
0(z) =

MaxXi
0(z)− Xi

0(z)

MaxXi
0(z)−MinXi

0(z)
 ….. Lower The Better…. (4.1) 

Xi
0(z) =

Xi
0(z)−Min Xi

0(z)

MaxXi
0(z)−MinXi

0(z)
…. Higher The Better….  (4.2) 

Equation 1st is used for lower the better characteristics, i.e., 

for Fe and SR, equation 2nd is used for higher the better 

characteristics, i.e., for MRR. Next step is to find out, the 

deviation sequence. 

Step II: Deviation Sequence 

Δ0i(k) = x0*(k) – xi*(k) ………………                    (4.3) 

X0*(k) = 1 …. (Maximum normalized value) 

Step III: Grey Relational Coefficient 

The grey relational coefficient can be calculated by using 

following equation. 

ξi (z) = 
𝛥𝑚𝑖𝑛+𝜁𝛥𝑚𝑎𝑥

(𝛥0𝑖(𝑧)+𝜁𝛥𝑚𝑎𝑥)
…………                                (4.4) 

Where, 

ξi (z) = Grey Relational Coefficient 

Δmin=mix|| x0(z) – xi(z) || = ||1 - 1|| = 0 

Δmax=max|| x0(z) – xi(z) || = ||1 - 0|| = 1 

𝜁  = distinguishing coefficient between [0, 1] = (0.5) 

selected. 

Δ0i (z) = Deviation sequence 

Δ0i (z) = || x0*(z) – xi*(z) || 

xi*(z) = 1 ………. (Maximum normalized value) 

Where, Δ0i (z) is the deviation sequence x0*(z) of the 

reference sequence and the x0 (z) comparability sequence. 

Step IV: Grey Relational Grade (γi) 

The grey relational grade can be calculated by using 

following equation. gamma  

γi = 𝛴 W i (z) * ξi (z) 

Where, 

γi = Grey relational grade 

Wi = Weightage given to response variable 

If the GRG has greater value, it shows that the concerned 

parameter combination is very nearer to the optimum value. 

The analysis was done to determine the cutting force and 

surface roughness performance characteristics by assuming 

that lower is better and higher is better, respectively, and that 

MRR is better. Normalized values are presented in Table 9, 

deviation sequence Δ0i and GRC are listed in Table 10, and 

GRG is listed in Table 11. Table 11 lists the predicted GRG 
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for Fc, MRR, and SR, respectively, using different weight 

combinations of W1, W2, and W3. Applying the criterion of 

lowers is better features for Fc and SR respectively and 

higher is better characteristics for MRR yields the 

comparability sequence or normalizing value. Therefore, 

table 10 presents the normalized findings (for Fc, SR, and 

MRR) between 0 and 1 obtained for the L9 array together 

with observations. 

Table 10 Normalizing Values for Cutting Force, MRR and 

SR 

Sr. 

No. 

d 

(mm) 

f 

(mm/rev) 

Vc 

(RPM) 
Fc(N) 

SR 

(µm) 

MRR 

(cc/min) 

Normalizing Values 

Fc (N) 
SR 

(µm) 

MRR 

(cc/min) 

1 0.2 0.025 1400 47.61 0.14 4.748 0 0 0 

2 0.2 0.04 1600 48.22 0.142 8.683 0.008 0.03 0.244 

3 0.2 0.055 1800 54.47 0.146 13.43 0.093 0.091 0.538 

4 0.4 0.025 1600 79.96 0.206 10.85 0.441 1 0.378 

5 0.4 0.04 1800 83.16 0.171 19.53 0.484 0.47 0.916 

6 0.4 0.055 1400 88.81 0.184 20.89 0.561 0.667 1 

7 0.5 0.025 1800 87.89 0.156 12.21 0.549 0.242 0.462 

8 0.5 0.04 1400 115.8 0.151 15.19 0.929 0.167 0.647 

9 0.5 0.055 1600 121 0.168 17.87 1 0.424 0.813 

Table 11 Deviation Sequence and GRC for CF, MRR and SR 

Deviation Sequence Grey Relational Coefficient 

Fc (N) SR (µm) 
MRR 

(cc/min) 
Fc (N) SR (µm) 

MRR 

(cc/min) 

1 1 1 0.3333 0.33333 0.3333 

0.992 0.97 0.756 0.3351 0.34014 0.3981 

0.907 0.909 0.462 0.3554 0.35486 0.5198 

0.559 0 0.622 0.4721 1.0000 0.4457 

0.516 0.53 0.084 0.4921 0.48544 0.8562 

0.439 0.333 0 0.5325 0.60024 1.0000 

0.451 0.758 0.538 0.5258 0.39746 0.4817 

0.071 0.833 0.353 0.8757 0.37509 0.5862 

0 0.576 0.187 1.0000 0.46468 0.7278 

Table 12 GRG and Order for CF, MRR and SR 

Sr. 

No. 

GRG 

Order 

GRG 

Order 

GRG 

Order 
W1 = 0.33 W1 = 0.25 W1 = 0.25 

W2 = 0.33 W2 = 0.50 W2 = 0.25 

W3 = 0.33 W3 = 0.25 W3 = 0.50 

1 0.1100 9 0.1111 9 0.1111 9 

2 0.1181 8 0.1178 8 0.1226 8 

3 0.1353 7 0.1321 7 0.1458 7 

4 0.2110 3 0.2431 1 0.1970 5 

5 0.2017 5 0.1933 4 0.2242 3 

6 0.2346 2 0.2277 2 0.2611 1 

7 0.1545 6 0.1502 6 0.1572 6 

8 0.2021 4 0.1843 5 0.2019 4 

9 0.2412 1 0.2214 3 0.2434 2 

B. Parametric Level Optimization for Input Process 

Parameters 

A.  Grey Relational Analysis (W = 0.54, W = 0.03, W = 0.43) 

With a given weights for Fc, MRR and SR run no. 4 (refer 

table 12) has the highest GRG value equal to 0.2412 with Fc = 

121 N, MRR = 17.87 cc/min and SR = 0.168 µm. Thus, 

predicted optimum milling cutting process parameter levels 

setting by GRA are cutting speed at level 2; depth of cut at 

level 2 and feed rate at level 3, i.e., V-2, d-2 and f-3. 

Table 13 Comparison between Grey Grade and Mean 

Prediction 

Weights Level 

Initial 

process 

parameters 

Optimum process 

parameters 

Prediction Experiment 

D-1, F-1 

and v-1 

D-2, f-3 and 

v-2 

D-2, f-3 and 

v-2 

a) 

CF (N) 47.61 - 121 

MRR (cc/min) 4.748 - 17.87 

SR(μm) 0.14 - 0.168 

GRG 0.3300 0.7329 0.7235 

Improvement of the GRG 0.4029 

b) 

CF (N) 47.61 - 79.96 

MRR (cc/min) 4.748 - 10.85 

SR(μm) 0.14 - 0.206 

GRG 0.3333 0.7243 0.7294 

Improvement of the GRG 0.3961 

c) 

CF (N) 47.61 - 88.81 

MRR (cc/min) 4.748 - 20.89 

SR(μm) 0.14 - 0.184 

GRG 0.3333 0.7329 0.7438 

Improvement of the GRG 0.4105 

Figure 12 shows the graph and summary of average GRG 

for all cutting process parameter at each level respectively. 

The prediction of optimum cutting process parameter levels 

with response means approach c - 3d - 3 and f-3, gives as 

these levels have highest GRG values among respective 

groups. A confirmative test is taken with results Fc = 121 N, 

MRR = 17.87 cc/min and SR = 0.168 µm. This gives the 

GRG 0.7235. The results are shown in table 13. 

 
Figure 12 Main Effect Plot for Material Removal Rate 
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B.  Grey Relational Analysis (W = 0.25, W = 0.50, W = 0.25) 

With a given weights for Fc, MRR and SR run no. 4 (refer 

table 12) has the highest GRG value equal to 0.7293 with Fc = 

79.96 N, MRR = 10.85 cc/min and SR = 0.206 µm. Thus, 

predicted optimum cutting process parameter levels setting 

by GRA are cutting speed at level 3; depth of cut at level 2 

and feed rate at level 3, i.e., Vc-2, d-1 and f-1. 

 
Figure 15 Grey Relational Vs Cutting Process Parameters 

Figure 13 shows the graph and summary of average GRG 

for all cutting process parameter at each level respectively. 

The prediction of optimum cutting process parameter levels 

with response means approach Vc – 2, d-1 and f-1, gives as 

these levels have highest GRG values among respective 

groups. A confirmative test is taken with results Fc = 79.96 N, 

SR = 0.206 µm and MRR = 10.85 cc/min. This gives the 

GRG - 0.7294. The results are shown in table 4.14. 

C.  Grey Relational Analysis (W = 0.25, W = 0.25, W = 0.50) 

With a given weights for Fc, MRR and SR run no. 6 (refer 

table 12) has the highest GRG value equal to 0.7438 with F = 

88.81N, MRR = 20.89 cc/min and SR = 0.184 µm. Thus, 

predicted optimum cutting process parameter levels setting 

by GRA are cutting speed at level 1; depth of cut at level 2 

and feed rate at level 3, i.e., Vc-1, d-2 and f-3. 

 
Figure 16 Grey Relational Vs Cutting Process Parameters 

Figure 16 shows the graph and summary of average GRG 

for all cutting process parameter at each level respectively. 

The prediction of optimum cutting process parameter levels 

with response means approach d-2, f-3 and Vc-1 gives as 

these levels have highest GRG values among respective 

groups. An experimental test is taken with results Fc= 88.81, 

MRR = 20.89 cc/min and SR = 0.184 µm. This gives the 

GRG-0.6212. The results are shown in table 15. 

IV. CONCLUSION 

The depth of cut significantly affects cutting force 

(87.92%), while the impact of feed rate and cutting speed is 

minimal (7.03% and 9.24%, respectively). Analysis of the 

S/N ratio for cutting force predicts the optimal combination 

of milling parameters to be Vc = 1400 RPM, d = 0.5 mm, and 

f = 0.055 mm/rev, yielding the highest S/N ratio. Surface 

roughness is largely influenced by the depth of cut (79.18%), 

with feed rate and cutting speed having lesser effects (7.59% 

and 10.25%, respectively). S/N ratio analysis for surface 

roughness suggests the optimal combination of hard milling 

parameters as Vc = 1800 RPM, d = 0.2 mm, and f = 0.040 

mm/rev, producing the maximum S/N ratio. Material 

removal rate (MRR) is significantly impacted by feed rate 

(45.99%) and depth of cut (48.80%), while cutting speed 

contributes minimally (4.57%). Analysis of the S/N ratio for 

MRR indicates the best combination of hard milling 

parameters to be Vc = 1800 RPM, d = 0.4 mm, and f = 0.055 

mm/rev, yielding the highest S/N ratio. 

The ideal configuration is determined by assigning equal 

weights to F, SR, and MRR, with a cutting speed of 1400 

RPM, a cut depth of 0.5 mm, and a feed rate of 0.055 mm/rev. 

Setting the parameters to cut at 1800 RPM, cut depth of 0.4 

mm, and feed rate of 0.055 mm/rev is recommended when 

MRR is prioritized. Setting the parameters to cut at 1800 

RPM, cut depth of 0.2 mm, and feed rate of 0.040 mm/rev is 

recommended when SR is prioritized. 
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